Note que
\begin{align*}
U =\amp \{(x,y,x+y): x,y \in \mathbb{R}\} \\
=\amp
\{x(1,0,1) + y(0,1,1): x,y \in \mathbb{R}\} \\
=\amp
\langle (1,0,1),(0,1,1) \rangle,
\end{align*}
\begin{align*}
W =\amp \{(z,z,t): z,t \in \mathbb{R}\} \\
=\amp
\{z(1,1,0) + t(0,0,1): z,t \in \mathbb{R}\}\\
=\amp
\langle (1,1,0),(0,0,1) \rangle.
\end{align*}
Então,
\begin{align*}
U+W =\amp \{ \mathbf{u} + \mathbf{w} : \mathbf{u} \in U, \mathbf{w} \in W \} \\
=\amp
\{ x(1,0,1) + y(0,1,1) + z(1,1,0) + t(0,0,1) : x,y,z,t \in \mathbb{R} \} \\
=\amp
\langle (1,0,1),(0,1,1),(1,1,0),(0,0,1) \rangle.
\end{align*}
Agora, dado \(\mathbf{v}=(x,y,z)\in \mathbb{R}^3\text{,}\)
\begin{gather*}
(x,y,z) = \alpha_1(1,0,1) + \alpha_2(0,1,1) + \alpha_3(1,1,0) + \alpha_4(0,0,1)
\end{gather*}
\begin{gather*}
\alpha_1 = x, \quad
\alpha_2 = y, \quad
\alpha_3 = 0, \quad
\alpha_4 = z - x - y
\end{gather*}
Logo, o sistema possui infinitas soluções. Portanto, \(U+W = \mathbb{R}^3\text{.}\)
\begin{gather*}
\dim(U \cap W) = \dim U + \dim W - \dim(U+W) = 2 + 2 - 3 = 1
\end{gather*}
\begin{align*}
U \cap W =\amp \{(x,y,z): x+y-z=0 \text{ e } x=y\} \\
=\amp \{(x,x,2x): x \in \mathbb{R}\} \\
=\amp \langle (1,1,2) \rangle
\end{align*}