Sejam \(\mathbf{u} = (x_1,y_1)\) e \(\mathbf{v} = (x_2,y_2)\text{,}\) então
\begin{align*}
T(\mathbf{u} + \mathbf{v}) \amp= T(x_1+x_2,y_1+y_2) \\
\amp= (2(x_1+x_2),0,x_1+x_2+y_1+y_2)\\
\amp= (2x_1,0,x_1+y_1) + (2x_2,0,x_2+y_2) \\
\amp= T(\mathbf{u}) + T(\mathbf{v}).
\end{align*}
Além disso, se \(\alpha\in \mathbb R\text{,}\)
\begin{align*}
T(\alpha\mathbf{u}) \amp= T(\alpha x_1,\alpha y_1)\\
\amp= (2(\alpha x_1),0,\alpha x_1 + \alpha y_1)\\
\amp= (\alpha (2x_1),0,\alpha(x_1 + y_1))\\
\amp= \alpha (2x_1,0,x_1+y_1)\\
\amp= \alpha T(\mathbf{u}).
\end{align*}
Logo, \(T\) é uma transformação linear.