Note que \(W \neq \varnothing\text{,}\) pois \(\mathbf{0} = (0,0,0) \in W\text{.}\) Sejam \(\mathbf{w}_1 = (x_1,y_1,0)\) e \(\mathbf{w}_2 = (x_2,y_2,0)\text{.}\) Então,
\begin{gather*}
\mathbf{w}_1 + \mathbf{w}_2 = (x_1,y_1,0) + (x_2,y_2,0) = (x_1+x_2, \; y_1+y_2, \; 0).
\end{gather*}
Logo, \(\mathbf{w}_1 + \mathbf{w}_2 \in W\text{.}\) Além disso, se \(\alpha \in \mathbb{R}\text{,}\)
\begin{gather*}
\alpha \mathbf{w}_1 = \alpha(x_1,y_1,0) = (\alpha x_1, \; \alpha y_1, \; 0).
\end{gather*}
Portanto, \(\alpha \mathbf{w}_1 \in W\text{.}\) Assim, \(W\) é um subespaço vetorial de \(V\text{.}\)