\begin{equation}
(1+x^4+x^8)^{12} = \sum_{\alpha_1+\alpha_2+\alpha_3=12} \frac{12!}{\alpha_1!\alpha_2!\alpha_3!} 1^{\alpha_1}\cdot(x^4)^{\alpha_2}\cdot(x^8)^{\alpha_3}.\tag{3.3.1}
\end{equation}
Queremos \(\alpha_1, \alpha_2, \alpha_3\text{,}\) tais que
\begin{equation*}
{4\alpha_2}+ {8\alpha_3} = {12} \quad \text{ e } \quad \alpha_1+\alpha_2+\alpha_3=12.
\end{equation*}
Ou seja,
\begin{equation*}
\begin{cases}
\alpha_2+2\alpha_3=3 \\
\alpha_1+\alpha_2+\alpha_3=12.
\end{cases}
\end{equation*}
O sistema admite duas soluções:
\begin{equation*}
\begin{cases}
\alpha_2 = 1, \alpha_3 = 1 \text{ e }\alpha_1 = 10 \\
\alpha_2 = 3, \alpha_3 = 0 \text{ e } \alpha_1 = 9.
\end{cases}
\end{equation*}
Do somatório
(3.3.1), a soma dos termos relacionados à
\(x^{12}\) é
\begin{equation*}
\frac{12!}{1!1!10!}\cdot x^{12} + \frac{12!}{9!3!0!}\cdot x^{12}.
\end{equation*}
Logo, o coeficiente de \(x^{12}\) é
\begin{align*}
\frac{12!}{1!1!10!} + \frac{12!}{9!3!0!} = \amp~12\cdot 11 + \frac{12\cdot 11\cdot 10}{6}\\
=\amp~ 12\cdot 11 + 2\cdot 11\cdot 10 \\
=\amp~352.
\end{align*}